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ON THE MEAN SQUARED ERROR OF NONPARAMETRIC ,
QUANTILE ESTIMATORS UNDER RANDOM RIGHT-CENSORSHIP

Y. L. Lio and W. J. Padgett A

Department of Statistics
University of South Carolina
Columbia, South Carolina 29208

ABSTRACT'

-a For randomly right-censored data, new asymptotic expressions

for the mean squared errors of the product-limit quantile

estimator and a kernel-type quantile estimator are presented in

this paper. From these results a comparison of the two quantile . *"

estimators with respect to their mean squared errors is given.

1. INTRODUCTION /

One characteristic of a probability distribution function

that is of interest in many situations is the quantile function.

The quantile function of a distribution function G is defined

by Q(p)C--l(p)-inf~x: G(x) _ p), 0 _ p _ 1. For a randon[ J 0
(uncensored) sample from G, the sample quantile function, ,d -

Gnl(p) - inf [x: Gn(X) - p ), has been used as a nonparametric

estimator of Q(p), where Gn denotes the sample distribution

function. Many of the known results about Gn (p) have been I

presented by Csorgo (1983). In addition, Falk (1984, 1985) has .11y Codes

studied the mean squared errors of the sample quantile and , f.or

(I5,.." -
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kernel-type estimators and obtained asymptotic normality results L

for kernel estimators. Yang (1985) has obtained some convergence

properties of kernel estimators of Q(p) and has presented some

simulation results comparing kernel-type estimators with other

estimators. r
For right-censored data, Sander (1975) discussed the

estimation of Q(p) by the quantile function of the product-limit O

estimator. She and Cheng (1984) derived asymptotic properties

and Csdrgo (1983) presented strong approximation results for

that estimator.

For randomly right-censored data, Padgett (1986) discussed a

smooth nonparametric estimator of the quantile function, defined
by1

Q(P)- h(t) K((t-p)/h) dt, where denotes the

product-limit quantile function, K is a kernel function, and h is

the bandwidth. This estimator, which had been mentioned briefly -1

by Parzen (1979), was shown to be strongly consistent, and and
,On

an approximation, Qn' were shown to be almost surely

asymptotically equivalent. The asymptotic normality of Qn and * .e

and some asymptotic mean equivalence and mean square convergence

results were obtained by Lio, Padgett and Yu (1986) and Lio and

Padgett (1986). Some simulation results in Padgett (1986)

showed that, for exponential life and censoring distributions
VAfor fixed n and p, there were values of h for which the mean

squared errors of Qn(p) were smaller than those of Qn(p). More
n

extensive simulations by Padgett and Thombs (1986) indicated the

same results for several families of life distributions, kernel

functions, and censoring distributions.

In this paper, new asymptotic expressions for the mean

squared errors of Q n(p) and Qn(p) are derived. The conditions on

(p) here are less restrictive than those required for the mean

square convergence results of Lio and Padgett (1986). The

expressions provide a comparison of the mean squared errors of

these two estimators for small h and large n. In Section 2 some

further notation and definitions are presented. The asymptotic

expression for the mean squared error of the product-limit
,1
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quantile function is given in Section 3, and the result for the

kernel estimator Qn is derived in Section 4. It should be k.

mentioned that the order statistic methods used by Falk (1984,

1985) to obtain an asymptotic expression for the mean squared

error of the empirical quantile function cannot be used to study

the mean squared error of the product-limit quantile function due -

to the unequal random jumps in the product-limit distribution .

function.

2. NOTATION AND PRELIMINARIES

Let 0 X denote the true survival times of n items or

individuals that are censored on the right by a sequence Ul, U2 ,
.., U which in general may be either constants or random

variables. It is assumed that the X0's are nonnegative

independent identically distributed random variables with common

unknown distribution function F and unknown quantile function

QO= F . The observed right-censored data are denoted by the

pairs (X., a) ' i-i,..., n where ",r1 1e

00

X - miniX,Ui}, Ai f
0 if XT > U.

1 1

Let (Zi.,A.), i=l,...,n, denote the ordered Xi's along with
their corresponding Ai's. A popular estimator of the survival

function SO - 1-F is the product-limit estimator of Kaplan and
0 0Meier (1958), shown to be "self-consistent" by Efron (1967) and

defined by ""

1 0 < t < zI ,
'k-i
-tn-i-i A.Pn(t) - n-i+l t < Z,_, k=2,...,n

0, t > Z
n '.

Denote the product-limit estimator of F (t) by F (t) - 1 - P (t),
o n n

and let s denote the jump of Pn at Z., that is,

no

1%P
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.' .



44 B..

V.

S P Z + ), j - 2,...,n-

nln), j n.

Note that s.0 if and only if A. - 0, j < n, i.e. whenever Z. is

a censored observation. Also, denote S. n F (Z. ) j 1j

i-1,...,n, with S a 0, Z a 0, and Z Z + c, for some
positive constant .

"..'

It is natural to estimate QO(p) by the product-limit (PL)

quantile function Qn(p) - inf t: Fnlt) > p} The kernel-type

estimator Qn(p) studied by Padgett (1986) is written as

%(P) M h T Qn(t)K((t-p)/h)dt
1 n S.

h-1 l ' .i
= - E1 Zj f I K((t-p) /h)dt, (2.1)"m si-l

for a kernel function K and bandwidth h. ie nt

For the results here, the random right-censorship model will

be assumed; that is, U ,...,U n constitute a random sample from a

distribution H (usually unknown) and are independent of XV,...

XnO  The distribution function of each X. i-l,...,n, is then F

1 --Fo)(l-H".

For a distribution function G, let TG - sup{t: G(t)<1}.

3. MEAN SQU1ARED ERROR OF THE PL QUANTILE FUNCTION

In this section, an asymptotic expression for the mean

squared error of the PL quantile function is derived. In the
proof of this result, K (t,s) denotes the generalized Kiefer

process (cf. Csorgo, 1983, p. 118).

Theorem 3.1 Let p be such that 0 < p < min {ITH(Qo)). Suppose

H is continuous and QO is twice differentiable in a neighborhood
of p with bounded second derivative on a neighborhood of p.

Then for large n, E{[ (p)_QI(p)]2} exists and

E Qn(p)-Q(p)]21 n 1 (QO (p))2 (-p) )X) 0 (I-x) 2(lH(QO(x) )) :

+ 3O(n + o(n-1). (3.1)

% 
- .
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Proof: Denoting the PL quantile function based on the uniform
2distribution on (0,1) by Un(P), we have E[Qn(p)]2} = *

E{[Fl(Un(P))]2}. By My, Cs76rgo and Horvath (1985), U n(p) < p

a.s. if p < p* < min (,TH(QO)l so that Fol(Un(p)) < F 0(p*) a.s.

Hence, Ef[(p)- ) 2} < ..

Next, define the events An= IjUn(p)-pI>c} for fixed c > 0.

Then
Et[0(p) - QO(p)]2} 2 E[Qn(p)_Q 0(p)]2A

+ E{i[(p)-Q°(p)]2IAc I , (3.2)
n.

where IA denotes the indicator random variable of the event A.

By Foldes and Rejto (1981) and the symmetry property as in

Sander (1975), s>0 can be chosen so that P[ jIUn(P)-p>C] <

d 0exp (-nd1 ) for some positive constants d0 and d1 where do does

not depend on F0 and H. Then from (3.2)

E[ Q O(p)]} . O(exp(-nc))

+ E{[eQn(p)-Q°(p)]2I c) (3.3n..

for some constant c > 0.

Now the second term on the right side of (3.3) is

l(Un(p))-l ;(p)]Ac 2 2

- E[Q°(p)(UnP)- ) +Q°"(pl) (Un(p)-p)2/2]2IAC} (3.4) '

*where P1 belongs to a neighborhood of p. But (3.4) is equal to V :..

E( Q°'(p)(Un(p)-p)2 IAc} + O(E[IU(p)-p13 ])-.
n

(QO'(p))2 E((Un(p)-p)2] + O(n-3 ) .
nn

since
n3/2Un(p)-PIJ 3n sup (IUn(P)-P1 3) %

< n 3/2sup (I an(p)-p 3),
-0<Pp**

the last term of which is uniformly integrable, where p* <

p** < min {i, TH(QO)} and a n is the PL empirical quantile function

based on the uniform distribution over (0,1).
.5 So

o 2 o 2 -1E[Qn(p)_Q (p)] (Q (p)) n E( n (Un(p)-p)

.~~ . . .- . .. .- . . .. . .. • . . . . ' k . S -.. ... 4/ . .
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_n-Y(p,n) ]2 + 2 n(Un(p)-p)
-n-K * (p,n)]n- K (p,n)

2 -3/2
+[n K (p,n)] I- 0(n

of 2 -1 -4 * 2
- (Q (p)) n E[[n (Un(p)_p)_n K (p,n)] J+(QO' (p)) 2n- [n% p)_p)_n- K* n* (p,n) })

+(QO'(p))2(1-p)2n dx + O(n-3 ).
(1-x)2(l-H(QO(x)) ) ;

'a0

The result of the theorem follows from the facts that E[[n (U (p)-

p)-n K (p,n)] I < - and E{[n (Un(p)-p)-n -K*(pn)]n- K*(p,n).
-- * r

< , since n(U(p)-p)-n..K (p,n)] is uniformly integrable

for r > 1 and n'(Un(p)-p)-n-K*(p,n)-+ a.s. as n--.///

4. MEAN SQUARED ERROR OF THE KERNEL ESTIMATOR

The mean squared error of the kernel quantile estimator Qn)"

is considered in this section. Theorem 4.1 gives the asymptotic

expression.

Theorem 4.1 Let p be such that 0 < p < minfl,TH(QO)I. Suppose H
0is continuous, Q is twice differentiable in a neighborhood of p

of
with bounded second derivative, and Q (p) > 0. Assume that the

kernel K has support [-c,c] and f K(x)dx -1 and fx K(x)dx -0

for some c > 0. Then

E([Qn(p)-Q0(p)]2 - n-l(Qo (p))2 (1-p)2  dx
, ~~(l-x)2[ I-H(Q°(x) )] i[.

+ 2n-l(l-p) (Q (p))2 K(t)[l-Kt)] dx dt

(x)2[ -H(Q°(x) ) ] '"

'S'-

+0(n-3/2 )+O(h2 )+O(h 2n- )+o(hn- )+o(n- ), '5*

where K(t) -f K(x)dx for -c < t < c.
5'.. Proof: First, write

'. E{ ~~[Qn(p)-Q°(p) ]2} 1 {[.".
Ef ((S().Q~)2  Ef(r (c3 (phu)-QO(ph))K(u)du]2 I

+ I~Q(hu)-Q0(p1K(dI2

+ 2EI _[Q°(p+hu)-Q°(p)]u)dujn(P+hu) 
..-

4_c S4(

u- . _ . . . . . .. . . . . . . . -,- .. ., , .-. -. . . . . . . ... .. ... . .. .. , , - , . , I,, , . .. ,, . . . .. . . . .. . .. ... :'I I.'',.. ,." ,':.,."" "' " ." ". :,'," '.' -o.- --"->-- -< : - -- -- - ', - - - ' p.
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-Q (p+hu)]K(u)du}. (4.1)

By the assumption that QO has bounded second derivative on some

neighborhood of p,

c[Q°(p+hu)-Q°(p)]g(u)du 2 = O(h2). (4.2)

For e > 0 define the events An - fjUn(p+hu)-(p+hu) I > cl} where
Un is the PL quantile function based on the uniform distribution

on (0,1) as in the proof of Theorem 3.1. By the same argument

in that proof, choosing h small such that hc < min {i, TH(Qo)},

we have P(A n ) < d exp (-ndl) for some positive constants d and

d. Now write

Eu (Q(p+hu)-Q (p+hu))K(u)du]2} - E + E
where

E- E[[ (Qn(p+hu)-Q°(p+hu))K(u)du] . IAc
1 n

and -c n

E2 - E[[ (Qn(p+hu)-Q (p+hu))K(u)du] . A .1 .
-c n

By the same argument as in the proof of Theorem 3.1, since

p+hu < min (1, TH(QO)l , IE21 - O(exp(-nd1 )). Applying Taylor's

formula to E and using Sander's (1975) inequality (the symmetry

property) gives

E- E[ K(x)(Un(p+hu)-(p+hu))Q (p+hu)dul 2 }

9 * .- .

+ O(E[ sup ITY (p)-pI 3]) + O(exp(-ndI )),
0<_p<T**

where p < p+hc < T < min ITH(QO}. From the proof of Theorem 2

of Lio, Padgett and Yu (1986) for large n, O(E[sup IUn(p)_PI3])

- O(n -3/2). Also, by the same argument as in the proof of
' . Theorem 3.1,

E[ K(x)(U n p+hx)- (p+hx)(p+hx))dx] 2. -

c
' ~ ~ ~ ~ ~( -ni [ Kx[ % lnP+hx)-lp+hx))" -

- n K (p+hx,n)]dx]2 }l '(p)) 2

-+ 2n- 1 E f[-cK(x)[n (U(p+hx)-(p+hx)) II',

- n-K* (p+hxn)]dx[ K(x)n-K*(p+hx,n)dxl]} (Q'lp))2
~r c -.....,

,. *' *%* d ~ '.. %% ** V * ** * * **
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+ f 1 Q (p))2E[(j K(X)n- K (p+hx,n)dxl 2

+O(n3,2 )+o(hn-1

- (nt-) + n l(QO (p))2 E((JK(x)n K*(p..xn)dx ]21

+O(n -32) +o(hn -).

Now, by a result of Aly, Csbrgo and Horvath (1985),

J..E((JCK(x)fl K(p+hx,n)dx] I

r- 
.N- %

xJ(1-p-ht)W(d(p+ht) ,n)K( t)dt}

- A,+ A2 + A3,

where

A, -nE( Jcfllp)W(d(:+hx),n)w(d(p+ht)mn)

x K(x)K(t)dxdtl, .

-C -- 2n~~l-p ECrx K(x)K(t) W(d(p+hx),n)

x W(d(p+ht),n)dxdtl,

A3 n nh Ef Jcf'c xtK(x)K(t)W(d(p+hx),n)

x W(d(p+ht),n)dxdt},

and W(s,t) denotes a two-parameter Weiner process with

E(W(s,t) 0O and ECW(s,t)W(S',t')] -mini s,s') min {t,t'} with

dt Ix-[1-H(Q (x))I r -.

Now,
4; t

A,- r~~lp c K(t)K(u)r (l-x)-2 [lH(QO(x))] ldx du dt

+ n7'1p)rj K(t)K(u)f (1-x)2[l-H(Q (x))] dx du dt
.4 -c t 0

- l n ±p 2  hu-2
_x Ctd du dt

'-c' 0

+ rccKpKU~ ht-)2 [-((x)-1 xdud

+ JK(t)El-K(t)]Jf(-x)2(1-H(Q (x))J- dx dt.
S c p

-c
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and in the second term let g(u) f (l-x)2 l-H(Q°(x))]-idx and
p

change the order of integration. Then combine the second and

fourth terms to get

A, - n-1(l-p) 2 20(l-x)-2[l-H(Q°(x))] -dx
0 ~ ht

+ 2n-l(l-p)2 r K(t)[1-K(t)J (1-x)-2(1-H(Q°(x))]-idx dt.
-c p

By the same arguments, A2 and A3 become

2c pA2 = -2 n-1h(l-p) r tK(t) f K(U) -(-x)-2 1-H (e°(x)) dx du dt

-4 n- h(l-p)f tK(t)[l-K(t)l (l-x)-2 1-H(Q°(x))-l dx dt
-C p

and 2 ht -2 1 t""
A3 2h_-tK(t)p (1-x) [1-H(Q°(x))]-idx(sK(s)ds)dt.

-c p t

Finally, combining these results for E1 and the result for

E2 , (4.1) yields the asymptotic expression of the theorem.///

Define -1 h-I Q°(t)K((t-p)/h)dt. Then an asymptotic

expression for E[[Qn(p)-Q 0 (p,h)]2 } can be obtained similar to

that in Theorem 4.1.

Theorem 4.2 With the same hypotheses as in Theorem 4.1, for

0 < h < S with small enough 6 < 1,

E[(Qn(p) - Q0(p,h)]
2

Sn-(1-p) 2(Q' (p))2_(l-x)[l-H(Q°(x))]-dx
0

+ 2n- (l-p) 2 (Q°(p))2 fCK(t)[-K(t)]

(x)-2 [ -ldx dt
P

+ O(n- 3/ 2 ) + O(h 2n- ) + o(hn
- ) + o(n-l).

Note that for h sufficiently small, we have

E[[Qn(p)-QO(p) E ((Qn(p)-Q°(p,h)] I + O(h2).
Hence, the two expectations are close for large n and small h. A

.1
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comparison of the mean squared error of the PL quantile function .

with the result of Theorem 4.2 can be stated in the following

corollary. The condition on the kernel function in this %

corollary is the same condition as in Falk (1984).

Corollary 4.3 If JtK(t) K(t) dt > 0, then under the conditions

of Theorems 3.1 and 4.2, there exists a & > 0 such that for any

fixed bandwidth 0 < h < 6 there is an NO so that when n > N,

E{[Qn(p) - Q°(p,h) ]2 ) - E[ (p)-Q°(p) ]2} < 0.

Proof: Write
n ]2o

'p.

S[E((cn(p)-Qo(p,h)]2  E[(Qn(p)-QO(fl)]

-2h
1 (l-p) 2(00' (p)) 2 fc K(t)[1K(t)]

f+ht -2 o -1
X (1-x) (l-H(Q (x))] dx dt

+ O(n-h h-1 ) + o(1) + h-lo(1) + O(h)

which for large n and small h is approximately
el p)2o -1-2(QO (p)) tK(t)K(t)dt[lH(QO(p))] ]-< 0.///

cr

Remarks: An attempt to extend Falk's (1985) methods for kernel

type quantile estimators to the case of random right-censorship

in a straightforward manner presents difficult mathematical

problems. In order to obtain a direct comparison of the mean

squared error of Qn(p) with that of Qn(p), a rate of convergence

faster than the o(n- ) term in the expression in Theorem 4.1 is

needed. However, such a rate is not available. A relationship

between the rates at which h 40 and n 4 seems to be required

to determine the relative behavior of these two estimators with

respect to their mean squared errors.
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